Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharmacol ; 971: 176489, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38492875

RESUMEN

Substance abuse disorder is a chronic condition for which pharmacological treatment options remain limited. L-type calcium channels (LTCC) have been implicated in drug-related plasticity and behavior. Specifically, dopaminergic neurons in the mesocorticolimbic pathway express Cav1.2 and Cav1.3 channels, which may regulate dopaminergic activity associated with reward behavior. Therefore, this study aimed to investigate the hypothesis that pre-administration of the LTCC blocker, isradipine can mitigate the effects of cocaine by modulating central glutamatergic transmission. For that, we administered isradipine at varying concentrations (1, 7.5, and 15 µg/µL) via intracerebroventricular injection in male Swiss mice. This pretreatment was carried out prior to subjecting animals to behavioral assessments to evaluate cocaine-induced locomotor sensitization and conditioned place preference (CPP). The results revealed that isradipine administered at a concentration of 1 µg/µL effectively attenuated both the sensitization and CPP induced by cocaine (15 mg/kg, via i. p.). Moreover, mice treated with 1 µg/µL of isradipine showed decreased presynaptic levels of glutamate and calcium in the cortex and hippocampus as compared to control mice following cocaine exposure. Notably, the gene expression of ionotropic glutamate receptors, AMPA, and NMDA, remained unchanged, as did the expression of Cav1.2 and Cav1.3 channels. Importantly, these findings suggest that LTCC blockage may inhibit behavioral responses to cocaine, most likely by decreasing glutamatergic input in areas related to addiction.


Asunto(s)
Bloqueadores de los Canales de Calcio , Cocaína , Ratones , Masculino , Animales , Bloqueadores de los Canales de Calcio/farmacología , Isradipino/farmacología , Ácido Glutámico , Cocaína/farmacología , Dopamina/metabolismo
2.
Inflamm Res ; 72(10-11): 2073-2088, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37837557

RESUMEN

OBJECTIVE AND DESIGN: The present study aimed to investigate the neurochemical and behavioral effects of the acute consequences after coronavirus infection through a murine model. MATERIAL: Wild-type C57BL/6 mice were infected intranasally (i.n) with the murine coronavirus 3 (MHV-3). METHODS: Mice underwent behavioral tests. Euthanasia was performed on the fifth day after infection (5 dpi), and the brain tissue was subjected to plaque assays for viral titration, ELISA, histopathological, immunohistochemical and synaptosome analysis. RESULTS: Increased viral titers and mild histological changes, including signs of neuronal degeneration, were observed in the cerebral cortex of infected mice. Importantly, MHV-3 infection induced an increase in cortical levels of glutamate and calcium, which is indicative of excitotoxicity, as well as increased levels of pro-inflammatory cytokines (IL-6, IFN-γ) and reduced levels of neuroprotective mediators (BDNF and CX3CL1) in the mice brain. Finally, behavioral analysis showed impaired motor, anhedonia-like and anxiety-like behaviors in animals infected with MHV-3. CONCLUSIONS: In conclusion, the data presented emulate many aspects of the acute neurological outcomes seen in patients with COVID-19. Therefore, this model may provide a preclinical platform to study acute neurological sequelae induced by coronavirus infection and test possible therapies.


Asunto(s)
COVID-19 , Virus de la Hepatitis Murina , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Virus de la Hepatitis Murina/metabolismo , Citocinas/metabolismo , COVID-19/patología , Encéfalo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...